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Resonant diffusion in a linear network of fluctuating obstacles
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In this paper we consider the motion of a particle in a linear array of fluctuating barriers. Each barrier can
be closed or open and fluctuates in time. The motion of the particle is any stochastic motion between the
barriers and the closed barriers stops the particle. We give several rigorous asymptotic results for the trans-
mission probability of the particle and use them to show that this model presents a stochastic resonance with
respect to the probability of finding a barrier closed.@S1063-651X~98!15212-1#

PACS number~s!: 05.40.2d
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INTRODUCTION

The motion of a particle in a disordered environment
usually studied in one of the following situations. Eith
one assumes that the fluctuations in time of the environm
are extremely fast compared to the time scale of the mo
of the particle or one assumes that the fluctuations in tim
the environment are infinitely slow with respect to the tim
scales of the motion of the particle. The first situation~fast
environment! corresponds to the usual Markovian limit: Th
particle experiences an environment that essentially ha
memory. The second situation~very slow environment! cor-
responds to a quenched disorder and has recently bee
subject of many studies~see@1,2# for reviews and@3# for an
application to chemical kinetics in the presence of diffusio!.

The intermediate situation where the environment fluc
ates at a finite time scale is rather unknown. Recently,
situation of a diffusion in a fluctuating potential~between
two states! has been extensively studied~see@4–6#! and phe-
nomena of the resonance have been investigated. For rea
related to chemical kinetics, the case of potentials mode
by two fluctuating barriers has also been studied~see@7#! and
a resonance of the transmission probability has been ex
ited as a maximum of the transmission probability as a fu
tion of the probability to find a barrier closed. In this cas
the potential was fluctuating between four states.

The subject of this article is the diffusion of a particle in
disordered environment that is fluctuating in time. The en
ronment is idealized. A particle is moving on a long interv
@0,N#. At each pointn50,1,2, . . . ,N, an impenetrable bar
rier can appear at random times. In each interval@n,n11#
the particle has a certain given stochastic motion~which can
be of any type, even non-Markovian! and when the particle
arrives at siten11, say, it continues in@n11,n12# if the
barrier atn11 does not exist at the instant of arrival and it
reflected back in@n,n11# if the barrier atn11 is present at
the instant of arrival. The barriers at various sites are unc
related and the motion of the particle does not influence
environment. Although this model is quite simple, it cann
be solved exactly. Nevertheless, it is possible the find rig
ous asymptotic results~in various limits of the parameter
controlling the fluctuation of the barriers! for the overall
transmission probability, that is, the probability that a p
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ticle entering the interval at 0 leaves it atN at a certain time.
These asymptotic results are sufficient to prove the existe
of a resonance in the following sense. For a certain rang
frequencies of the fluctuation of the barrier at each site,
overall transmission probability presents a maximum a
function of the probability to find a barrier closed. This res
seems paradoxical in the following sense. At first sight,
presence of the barrier would hinder the motion. However
the stochastic motion~without barriers! has a sufficiently low
probability of transmission this turns out to be wrong. T
presence of closed barriers may facilitate the transmissio
a particle because it also hinders the return of the particl
its starting point. Previous numerical simulations@8# were
not very conclusive, although they tended to confirm t
phenomenon~we shall examine reasons why this is so in th
article!. We notice that this phenomenon was exhibited e
plicitly for two barriers in@7# by analytical methods.

Although idealized, this kind of model has been used a
solved under certain approximations to describe diffusion
glasses@9# and also diffusion of a substrate in enzyma
reactions@10#. In the latter case the diffusion of the substra
is conceived as a traversal of a series of bottlenecks tha
structure of the enzyme contains naturally, which can
closed or open according to the conformational fluctuation
the protein. These kinds of phenomena have been exp
mentally observed@10# or simulated~for example, in myo-
globin @11#! and analytically described as a series of tw
state barriers@12#. Our result proves, as an unexpect
consequence, that a protein can also facilitate the diffusio
a substrate towards the reactive site. In other words, a pro
may also very well be, in certain circumstances, a diffusio
catalyst as well as having its traditional function of chemic
catalyst.

We now describe briefly the content of this article. In Se
I we return to the two-barrier cases and give more prec
results than those previously obtained in@7#. These prelimi-
nary results are necessary for Sec. II, where we presen
model of diffusion inN barriers and certain asymptotic re
sults. In Sec. III we give another asymptotic result~limit of
all barriers open! and in Sec. IV we derive the resonanc
result. The mathematical calculations and notation are ra
cumbersome. They are postponed to Appendixes A–D.
103 ©1999 The American Physical Society
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I. ASYMPTOTIC ANALYSIS
OF THE TWO-BARRIER SYSTEM

A. Description of the two-barrier system and notation

We consider first the two-barrier system, namely, we h
a certain interval, say@0,1# and a stochastic process in@0,1#.
We denotes(t)dt the probability that the particle startin
from 0 leaves the interval at 1 in the time interv
@ t,t1dt# andr (t)dt the probability that the particle startin
from 0 leaves the interval at 0 in the time interv
@ t,t1dt#. We assume that the stochastic process is symm
ric with respect to the exchange of 0 and 1 and there are
losses inside the interval

E
0

`

s~ t !dt1E
0

`

r ~ t !dt51.

We also denote

R5E
0

`

r ~ t !dt, S5E
0

`

s~ t !dt. ~1.1!

Otherwise, there are no further assumptions about the
chastic process~which can even be non-Markovian!.

Now we add two barriers at 0 and 1. These barriers can
in two states labelede50,1. When a particle hits a barrier i
a closed state (e51), it starts its stochastic process afre
and is reflected back in the interval. When it hits a barrier
an open state (e50) it leaves the interval. The probabilit
we8e(t) of finding a barrier in statee8 at time t while it is in
statee at time 0 is given by the dichotomous noise law

we8e~ t !5ae81~dee82ae8!e
2lt, ~1.2!

wherea0 ,a1 are the stationary probabilities of the states
and 1 of the barrier, so thata01a151, andl is the fluctua-
tion frequency.

We now want to compute the various transmission a
reflection probabilities of the whole system~the stochastic
process of the particle in the presence of the fluctuating
riers!. Unfortunately, the notation becomes rather prohi
tive. We shall denotesa8a(t;$e8%u$e%)dt the probability that
the particle leaves the interval in time@ t,t1dt# at pointa8
50,1 the states of the barrier being$e08 ,e18%5$e8%, knowing
that it starts at time 0 from pointa50,1, the state of the
barriers being$e0 ,e1%5$e%. Of necessity, hereea8

8 50 be-
cause the barrier ata8 must be open to let the particle g
through the barrier~and out of the interval!. We note that

sa8a~ tu$e%!dt5(
$e8%

sa8a~ t;$e8%u$e%!. ~1.3!

We find it convenient to denote the Laplace transform
a functionf (t), with the Laplace parameteru as f (u) or @ f #u,

f ~u![@ f #u[E
0

`

e2ut f ~ t !dt,

@ f #[@ f #0 ~ i.e., @ f #u with u50!.

The reason for these somewhat unusual abbreviations
appear shortly. In particular
e
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Sa8a
~u!

~$e8%u$e%!5E
0

`

sa8a~ t;$e8%u$e%!e2utdt,

Sa8a
~u!

~$e%!5E
0

`

sa8a~ tu$e%!e2utdt.

When we setu50 we simply denote without any upper in
dex

Sa8a~$e8%u$e%!5Sa8a
~0!

~$e8%u$e%!.

B. The system forSa,0
„u…

„e0 ,e1…

We start by writing a system of equations fo
Sa,0

(u)(10 ,e1). This will be a 434 closed system. We have

S10
~u!~10 ,e1!5@sw0e1

#u1@sw1e1
we

081#uS00
~u!~10 ,e08!

1@rw11we
18e1

#uS10
~u!~10 ,e18!, ~1.4!

S00
~u!~10 ,e1!5@rw01#

u1@swe01w1e1
#uS10

~u!~10 ,e0!

1@rw11we
18e1

#uS00
~u!~10 ,e18!. ~1.5!

In this system, which is closed, the convention is that
peated indices in a given monomial are summed over t
possibilities 0,1. Let us comment briefly on Eq.~1.4!: The
full propagator for leaving by 1, starting from 0, the barri
at 0 being closed, and the barrier at 1 being in statee1 is the
sum of the following contributions.

(i) @sw0e1
#u. This is the propagator for the direct motio

of the stochastic particle from 0 to 1 and when it arrives a
it finds the barrier open.

(ii) @sw1e1
we

081#uS00
(u)(10 ,e08). This is the propagator for

the direct motion of the stochastic particle from 0 to 1, th
finds at 1 a closed barrier, the barrier at 0 is in a certain st
e08 , followed by the full return propagator~from 1 to 1, but
recall that our system is symmetric! knowing that the barrier
at 1 is closed, and the barrier at 0 is in statee08 ,

S11
~u!~e08,11![S00

~u!~10 ,e08! ~by symmetry!.

(iii) @rw11we
18e1

#uS10
(u)(10 ,e18). This is the propagator for

the motion of the particle returning to 0~before reaching 1!
and finding the barrier at 0 closed, the barrier at 1 hav
fluctuated to statee18 , followed by the full propagator from 0
to 1, the barrier at 0 being closed, the barrier at 1 being in
new statee18 . This explains Eq.~1.4! and Eq.~1.5! is ex-
plained in a similar way.

Knowing the quantitiesSa0
(u)(10 ,e1), it is easy to compute

all the other quantitiesSa0
(u)(0,e). We have

S00
~u!~0,e!5@rw00#

u1@rw10we8e#
uS00

~u!~1,e8!

1@sw1ewe80#uS10
~u!~1,e8!, ~1.6!

S10
~u!~0,e!5@sw0e#

u1@sw1ewe80#uS00
~u!~1,e8!

1@rw10we8e#
uS10

~u!~1,e8! ~1.7!
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~again with summation over respected indicese8 under-
stood!.

C. Asymptotic values ofSa0
„u…

„ˆe‰…: Limit of closed barriers

In this section we consider the asymptotics of the tra
mission or reflection probabilitiesSa0

(u)($e%) in the limit of
closed barriers, that is, whena0→0.

1. The caseu>0

The calculations are given in Appendix A. The quantiti
Sa0

(u)(e0 ,e1) are all 0 whenea51 in the limit of a050, as
results from Eqs.~A11!–~A14!. The nonzero quantities
Sa0

(u)($e%) are given in these equations~A11!–~A14!. In other
words, one cannot leave the interval@0,1# by a point where
the barrier was initially closed, in any finite time interval.

2. The caseu50

In this case we notice that in the limita050,

S00~1,1!5S10~1,1!5 1
2

and the other quantitiesSa0($e%) are given in Eqs.~A16!,
~A17!, and~A19!–~A22!.

3. Remark

We see thatS00
(u)(1,1) or S00

(u)(1,0) are 0 foruÞ0 when
a050, while they are not 0 foru50 and a050. This is
related to the following phenomena. Suppose we wan
compute the transmission probabilityS01(0,1) using a sum
over paths. This in fact can be easily done if the stocha
process in@0,1# is the ballistic motion~i.e., the particle starts
from 0, say, and arrives at 1 at a given timet, its motion
being uniform!.

It is easy to see that, by summing over all possible pa

S01~0,1!5w01~t!1w11~t!w10~2t!w0~2t! (
n>0

w11~2t!2n.

If we stop the expansion at any finite order, we see that
result is 0 whena0 tends to 0. On the other hand, the ge
metric series, when summed, gives the factor@1
2w11(2t)2#21[w01(2t)21@11w11(2t)#21 and thea0 in
factor ofw01 cancels with thea0 in the numerator leading to
a finite and nonzero result whena0 tends to 0. So we have
situation where at any finite order of perturbation theory,
resulting quantity is zero while the exact result is nonzer

At the level of the system of equations~A2! and~A3! this
phenomenon manifests itself in that the system degene
for u50 and a050 and becomes underdetermined in th
circumstance. The method to lift the underdetermination
then to use the conservation of probability~the particle must
finally leave@0,1#!.

D. Asymptotic values ofSa0
„u…

„ˆe‰… for small frequenciesl

1. u>0

We setl50 in Eqs. ~A2! and ~A3!. In particularwe8e
5de8e and one finds
-

to

ic

s,

e
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is

S00
~u!~1,0!5S00

~u!~1,1!5S00
~u!~1,1!50,

~1.8!

S00
~u!~1,0!5

ŝ~u!

12 r̂ ~u!
.

2. u50

For u50, the system of equations~A2! and~A3! becomes
degenerate. It is nevertheless possible to show that

S10~1,0!51, S00~1,0!50,
~1.9!

S00~1,1!5S10~1,1!5 1
2 ,

from which we deduce, using Eqs.~1.6! and ~1.7!,

S00~0,0!5R, S00~0,1!51,
~1.10!

S10~0,0!5S, S10~0,1!50.

II. DIFFUSION IN A LINEAR ARRAY
OF FLUCTUATING BARRIERS

A. Description of the system and notation

We consider now an interval of lengthN ~N is an integer!
~see Fig. 1!. In each interval@ j , j 11#, one has a certain
stochastic process that is characterized by the follow
quantities: sj (t)dt is the probability that the particle star
ing from j, in the interval @ j , j 11#, leaves the interval
through pointj 11 between timest and t1dt andr j (t)dt is
the probability that the particle starting fromj in the interval
@ j , j 11# leaves the interval through pointj between timest
and t1dt.

We assume that each stochastic process in each inte
@ j , j 11# is symmetric with respect to the exchange of t
extremities of the interval. Moreover, at each pointj, we
place a fluctuating barrier that can be in statee j50,1 and
jumps between these two states according to Eq.~1.2!. Oth-
erwise, we do not assume anything else about the stoch
process.

If the particle arrives at a pointj ~coming from the left or
from the right! when the barrier atj is in the open statee j
50, the particle enters the next interval~say @ j , j 11# or @ j
21,j #, respectively! and starts a stochastic motion that
independent of the previous stochastic motion. If the part
arrives at a pointj ~from the right or the left! and the barrier
at point j is in the closed statee j51, the particle is reflected
back in the interval from which it comes~to @ j , j 11# or
@ j 21,j #, respectively! and starts again an independent s
chastic motion in this interval. Our aim is to study the qua
tity S@0,N#(0,$ek%k>1), which is the probability that the par
ticle leaves the interval@0,N# at N, knowing that it has
entered the interval at 0 at time 0.

FIG. 1. Linear array ofN barriers, with certain barriers open o
closed.
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B. Asymptotics for a050

Starting from the system of equations~B2! and~B3!, it is
possible to derive rigorous asymptotic results for the lim
a050 ~all barriers closed!. S@0,N#(0,$1%k>1) is the prob-
ability that the particle starting at timet50 from 0 leaves the
interval @0,N# by point N, the states of the barriers bein
e050 andek51 (k>1) at time 0. It is remarkable that on
obtains an addition formula for this probability in the form

1

S@0,N#~0,$1%k>1!
215 (

j 50

N21 S 1

Sj 11,j~0,1!
21D . ~2.1!

We notice also thatS@0,N#(0,$1%k>1) is, in the limit a050,
the transmission probability for a particle entering the syst
at time 0 at point 0~with the barrier at 0 open!, the other
barriersk51, . . . ,N being in their stationary states. If all th
intervals and the stochastic processes are identical, Eq.~2.1!
gives

S@0,N#~0,$1%k>1!5
S10~0,1!

N2~N21!S10~0,1!
, ~2.1a!

with S10(0,1) given by Eqs.~A20! and ~A22!,

S10~0,1!5
1

2 F12 r̂ ~l!2
ŝ~l!2

12 r̂ ~l!G . ~2.1b!

C. Asymptotics of the transmission probability for l50

We consider now the transmission probabil
S@0,N#(t;$e8%u$e%)dt, which is the probability starting from 0
~in the system@0,N#!, with the statesek for the barriers, to
leave the system@0,N# at point N between timest and t
1dt and with the states of the barriersek8 ~necessarilyeN8
50!. In the same mannerS@0,N#(t;$e8%u11,$e%)dt denotes
the analogous quantity, but starting from point 1 with po
tive velocity. The recurrence equations for the total transm
sion probabilities are given by

S@0,N#~$e8%u0,$e%k>1!5FS10~h0,0u0,e1!)
k>2

whkekG
3S@0,N#@$e8%u11;h0,01~hk!k>0#,

~2.2!

S@0,N#~$e8%u11,e0,01 ,$ek%k>2!

5@S@1,N#~ t,$e8%u01 ,$ek%k>2!we
08e0

#

1@R@1,N#~ t,$hk%k>1u01 ,$ek%k>2!wh0e0
#

3FS00~ t,00 ,h08u00 ,h0!)
k>2

wh
k8hkG

3S@0,N#~$e8%u11;h08,01 ,$hk8%k>2!; ~2.3!

this is supplemented by the set of equations~B2! and ~B3!
for the R’s, which are defined in Appendix B. The brack
@•••# notations are as in Sec. I A.
t

-
-

Whenl tends to 0, all thewe8e reduce tode8e . Moreover,
the two-barrier quantitiesSa0($e8%u$e%), a50,1, are equal to
Sa0($e%)de8e , whereSa0($e%) are given by the formulas o
Sec. I D in the limitl50.

We shall assume, as a recurrence hypothesis,
S@0,N21#($e8%u00 ,$e%k>1) is 0 except ifek50 for all k>1
and$e8%5$00 ,$e%k>1%. This is true for the two-barrier sys
tem. Now Eq.~2.2! reduces in the limitl50 to

S@0,N#~$0%k>0u$0%k>0!5S10~0,0!S@0,N#~$0%k>0u11;$0%k>0!,
~2.4!

while in Eq.~2.3!, if we want a nonzeroR@1,N# and a nonzero
S@1,N# , we must have$ek%5$hk% and

S@0,N#~$0%k>0u11;$0%k>0!

5
S@1,N#~$0%k>1u$0%k>1!

12S00~0,0!R@1,N#~$0%k>1u$0%k>1!
, ~2.5!

so that from Eqs.~2.4! and ~2.5! and from the fact that

R@1,N#~$0%k>1u$0%k>1!512S@1,N#~$0%k>1u$0%k>1!.
~2.6!

Inserting Eq.~2.6! into Eq. ~2.5!, an addition formula is eas
ily obtained by induction:

1

S@0,N#~$0%k>0u$0%k>0!
5 (

j 50

N21 S 1

Sj 11,j
21D11. ~2.7!

Here Sj 11,j is the transmission probabilityj→ j 11 in the
interval @ j , j 11# in the absence of barriers, so thatSj 11,j

5*0
1`sj (t)dt. Then the total transmission probability a

equilibrium is

S@0,N#5a0
NS@0,N#~$0%k>0u$0%k>0! ~2.8!

and everything behaves as in a Markovian case.

D. Asymptotics for large l

Whenl→`, each time the particle hits a barrier, it find
it in its equilibrium state and the system does not have
memory. For a given interval@ j , j 11#, the effective trans-
mission probability is then given by the equation

Sj 11,j
~eff! 5Sj 11,ja01Sj 11,ja1~12Sj 11,j

eff !

1~12Sj 11,j !a1Sj 11,j
~eff! ,

which implies

Sj 11,j
~eff! 5

Sj 11,j

12a1~122Sj 11,j !
. ~2.9!

Then we have the addition formula

1

S@0,N#
215 (

j 50

N21 S 1

Sj 11,j
~eff! 21D . ~2.10!

When all the stochastic processes in@ j , j 11# are identical,
we have
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1

S@0,N#
215NS 12a1~122S!

S
21D . ~2.11!

III. ASYMPTOTIC IN THE LIMIT OF ALWAYS OPEN
BARRIERS „a0˜1…

We study the asymptotic value of the transmission pr
ability in the limit a0→1, i.e., in the limit of all barriers
open. Contrarily to the case of the limita0→0, we can use a
perturbation expansion in terms ofa1[12a0 . Thus the
method is completely different from the previous one a
does not use the recursion relations of Appendix B. We s
assume that the barrier at site 0 is always open~to let in the
particle! and we shall consider the total transmission pro
ability S@0,N# ~i.e., the probability that a particle entering
t50 the array at point 0 leaves the interval@0,N# through
point N, the barriers being initially in their equilibrium state
except the barrier at 0, which is initially open!. We look for
an expansion in powers ofa1 ,

S@0,N#5S@0,N#
~0! 1S@0,N#

~1! 1¯ , ~3.1!

whereS@0,N#
(k) is the term ina1

k and the term of order 0 an
S@0,N#

(0) is exactly the transmission probability in the absen
of barriers and is given by an ordinary addition law of t
type

1

S@0,N#
~0! 215 (

j 50

N21 S 1

Sj
21D , ~3.2!

where Sj is the probability*0
`sj (t)dt, i.e., the probability

that the particle entering@ j , j 11# through pointj leaves this
interval through pointj 11 ~in the absence of barriers!.
When all the intervals@ j , j 11# and the stochastic process
are identical, one recovers

S@0,N#
~0! 5

S

N2~N21!S
, S5E

0

`

s~ t !dt. ~3.3!

The formula forS@0,N#
(1) is given by Eq.~C21! or ~C22!.

From these formulas, one finds immediately that

S@0,N#
~1! increases withl, ~3.4!

]S@0,N#

]a1
Ua150

l50

,0, ~3.5!

]S@0,N#

]a1
Ua150

l5`

5S@0,N#
~0! @12~N11!S@0,N#

~0! #, ~3.6!

and so it is positive if and only ifS@0,N#
(0) ,1/(N11). If

S@0,N#
~0! ,

1

N11
,

there exists a valuel* such that

]S@0,N#

]a1
U

a150

.0 for l.l* . ~3.7!
-

d
ll

-

e

IV. STOCHASTIC RESONANCE

In this section we prove that there is a stochastic re
nance in terms ofa1 , namely, that the total transmissio
probability S@0,N# reaches a maximum, as a function ofa1 ,
for a1Þ1, at least for a certain interval of frequencies. W
assume the following hypotheses.

~i! First we suppose that all the intervals@ j , j 11# and
their stochastic processes inside them are identical. We
note by S the transmission probability in a single interv
@ j , j 11# ~without a barrier!.

~ii ! Next we assume thatS, 1
2 .

~iii ! Then we assume that the particle starts at point 0 w
a positive velocity, the state of the barrier at 0 ise050 ~open
barrier!, and all barriersk (k>1) are in the stationary stat
initially, that is, open with probabilitya0 and closed with
probability a1 .

Under these hypotheses, we can summarize
asymptotic results obtained in the previous sections. For~a!
a151 we have from Eq.~2.1!

S@0,N#ua1515
S10~0,1!

N2~N21!S10~0,1!
, ~4.1!

with S10(0,1) as in Eq.~2.1b!,

S10~0,1!5
1

2 S 12 r̂ ~l!2
ŝ~l!2

12 r̂ ~l! D . ~4.2!

For ~b! a150 we have from Eq.~3.3!

S@0,N#ua1505
S

N2~N21!S
. ~4.3!

Hypothesis~ii ! implies that

S@0,N#ua150,
1

N11
~4.4!

and from Eq.~3.6! we get

]S@0,N#

]a1
U

a150,l5`

.0. ~4.5!

Moreover, from Eq.~3.5! we have

]S@0,N#

]a1
U

a150,l50

,0. ~4.6!

~c! For l→0 we have

S@0,N#ua151,l5050 ~4.7!

@see Eq.~2.8!# and

S@0,N#ua150,l505
S

N2~N21!S
~4.8!

@see Eq.~2.7!#. ~d! For l→`, we have from Eq.~2.11!

S@0,N#5
S~eff!

N2~N21!S~eff! , ~4.9!
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S~eff!5
S

12a1~122S!
, ~4.10!

S@0,N# increases as a function ofa1 for l5`.
~4.11!

From these results alone we can sketch the graphs ofS@0,N#

as a function ofa1 for l50 and` ~see Fig. 2!: ~i! For all l,
all graphsS@0,N# start ata150 at the point

S

N2~N21!S
,

1

N11
~S, 1

2 !; ~4.12!

~ii ! for l50, the graph ofS@0,N# goes to 0 whena151 @Eq.
~4.7!# and is decreasing as a function ofa1 @Eq. ~2.8!#; ~iii !
for l5`, the graph ofS@0,N# goes to 1/(N11) and is an
increasing function of a1 @Eq. ~4.11!#; ~iv! finally,
]S@0,N# /]a1ua150 is an increasing function ofl @see Eq.
~3.4!#.

From the sketch of Fig. 2 it is clear that there must exis
certain interval ofl whereS@0,N# has either a maximum or
minimum as a function ofa1 because whenl varies from 0
to `, the graph varies from a decreasing to an increas
graph and surely for any value ofl, S@0,N# cannot be a con-
stant function ofa1 . So there must exist certain intervals
l so that the graph has a maximum or a minimum.

We are now in a position to prove the main result of th
work: Under the assumptions of Eq.~4.1!, in particular in the
case ofS, 1

2 , there exists an intervalL of frequency so that
whenl is in L, S@0,N# has a maximum as a function ofa1 for
a certain value ofa1 between 0 and 1. Moreover, the interv
L contains neither 0 nor̀ .

Using the sketches of the graphs~see Fig. 2!, it is enough
to prove that for certain frequenciesl,

S@0,N#ua1502S@0,N#ua151.0, ~4.13!

]S@0,N#

]a1
U

a150

.0. ~4.14!

Using Eq.~C21! in the form

FIG. 2. Sketch of the graphs ofS@0,N# as a function ofa1 for
various values ofl, includingl50 or `.
a

g

]S@0,N#

]a1
U

a150

5
S@0,N#

~0!

N2~N21!S FN22S(
k51

N
1

12 r̂ @0,k#~l!G ,

we see that Eq.~4.14! is equivalent to

N

S
.2(

k51

N
1

12 r̂ @0,k#~l!
, ~4.15!

while, using Eqs.~4.1!–~4.3!, we see that Eq.~4.13! is
equivalent to

S2
1

2
@12 r̂ ~l!#1

ŝ2

222~12 r̂ !
.0. ~4.16!

We define the quantity

q512 r̂ ~l! ~4.17!

so that Eq.~4.16! is equivalent to

ŝ2.q222qS[g~q!. ~4.18!

If A is an upper bound ofr̂ @0,k# , it is sufficient to prove,
instead of Eq.~4.15!, that

A,122S. ~4.19!

In Appendix D 1, we show that we can replace Eq.~4.19! by
the inequality

r̂ 1 ŝ2~12 ŝ22r̂ 2!~122S!

12 r̂ ~122S!
,122S. ~4.20!

After a rearrangement, Eq.~4.20! can be rewritten

r̂

122S
1~ ŝ22 r̂ 2!,12 r̂ ~122S!,

which in terms ofq defined by Eq.~4.17! can be rewritten

ŝ2,q21
4S2

122S
q2

4S2

122S
[h~q!. ~4.21!

Now, obviously

r̂ 1 ŝ<1,

so that

S<q<1, ŝ2<q2, ŝ2<S2. ~4.22!

The system of inequalities~4.18!, ~4.21!, and ~4.22! is dis-
cussed in Appendix D 2 and it is proved there that one
find an intervalL of l where these inequalities are simult
neously satisfied, which implies that Eqs.~4.13! and ~4.14!
are also both satisfied forl in L so that the system presen
a stochastic resonance in the sense that its transmission
ability is maximized by a convenient choice of the parame
a1 . Moreover, this result is valid for anyN.

Remark.This result extends previous ones obtained
the case ofN52 barriers. However, for the method used
that case,N cannot be extended to the case of generalN. We
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notice why the simulation of@8# was not very conclusive
The reason is that the intervalL is rather small.

CONCLUSION

The preceding conclusion is the main result of this artic
In spite of the fact that the transmission probability cannot
calculated exactly, it was possible to prove analytically th
in relevant conditions, this transmission probability prese
a stochastic resonance for a certain value of the ave
probability of the presence of the barriers~or average density
of barriers! a1 . The resonance is due to the interaction
two stochastic processes: the stochastic motion intrinsi
the particle and the fluctuations of the barriers. It should
pointed out that two characteristic times appear in this s
tem: the relaxation time of the barriers and a characteri
return time, which is the average time needed by the part
to return to a barrier when all barriers are frozen. Howev
the resonance is not clearly related to the respective value
these times; in particular, the maximum of the transmiss
probability was obtained by varyinga1 rather than the relax
ation time of the barriers. Thus the comparison with oth
more classical, cases of resonance is difficult.

The system studied here is a very special and ideal
model of motion in a fluctuating environment of arbitra
size. Still this model has been used to describe the diffus
of a substrate in a protein as in@12#, relying on previous
experimental work and simulations@10,11#. The result in
@12# is restricted to the case of two barriers and was trea
using a Fokker-Planck–type approximation.

In subsequent work@13# we plan to study other model
with two barriers where the barriers are correlated. We p
to prove there that there is a rich structure of the phase t
sition provided the correlation between the obstacle is str
enough.

APPENDIX A: TRANSMISSION PROBABILITY
FOR TWO BARRIERS

In this appendix we prove the various results stated
Sec. I.

1. Solution of the system of equations„1.4… and „1.5…

We rewrite this system of equations as follows. First
define two column vectorsXa , a50,1, by

Xa5S Sa0
~u!

Sa0
~u!

~1,0!

~1,1! D , a50,1. ~A1!

We know that

(
e

we8eae5ae8 , ~A2!

we02we15~21!ee2lt. ~A3!

After some lengthy computations we obtain
.
e
t,
ts
ge

f
to
e
s-
ic
le
r,
of
n

r,

d

n

d

n
n-
g

n

~1,21!~X01X1!5
@s#l1u@12~a0 ,a1!~X01X1!#

12@rw11#
l1u2a0@s#2l1u ,

~A4!

~1,21!~X12X0!5
@s#l1u@11~a0 ,a1!~X12X0!#

12@rw11#
l1u1a0@s#2l1u ,

~a0 ,a1!~X11X0!H 12@rw11#
u2a1@s#u

2
a1a0~@s#l1u!2

12@rw11#
l1u2a0@s#2l1uJ

52
a1a0~@s#l1u!2

12@rw11#
l1u2a0@s#2l1u 1@~r 1s!w01#

u

1a0@s#l1u, ~A5!

~a0 ,a1!~X12X0!H 12@rw11#
u1a1@s#u

2
a1a0~@s#l1u!2

12@rw11#
l1u1a0@s#2l1uJ

5@~s2r !w01#
u1a0@s#l1u

1
a1a0~@s#l1u!2

12@rw11#
l1u1a0@s#2l1u . ~A6!

2. Asymptotic of Sa0
„u…

„ˆe‰… when a0˜0, u>0

If we set a050 in Eqs. ~A5! and ~A6! we see that the
second members tend to 0@recall thatw015a0(12e2lt)#,
while the term in curly brackets of these equations~A5! and
~A6! stays away from 0 becauseu.0 @it is 12 r̂ (u)6 ŝ(u)#,
so that the matrix product (0,1)Xa vanishes fora50,1. Thus

S10
~u!~1,1!5S00

~u!~1,1!50 ~a050!. ~A7!

Then Eqs.~A3! and ~A4! give

S00
~u!~1,0!50, ~A8!

S10
~u!~1,0!5

ŝ~l1u!

12 r̂ ~l1u!
. ~A9!

Using Eqs.~1.2! and ~1.3!, it is easy to obtainS10
(u)(0,e) by

setting a050 in these equations and using the previou
obtained limiting values

S00
~u!~0,0!5 r̂ ~u1l!1

@ ŝ~l1u!2 ŝ~2l1u!# ŝ~l1u!

12 r̂ ~l1u!
,

S00
~u!~0,1!5 r̂ ~u1l!1

ŝ~l1u!2

12 r̂ ~l1u!
,

~A10!

S10
~u!~0,0!5 ŝ~l1u!1

@ r̂ ~l1u!2 r̂ ~2l1u!# ŝ~l1u!

12 r̂ ~l1u!
,

S10
~u!~0,1!50.
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3. Asymptotic of Sa0
„u…

„ˆe‰… when a0˜0, u50

Now we setu50 and consider Eqs.~A5! and~A6! when
a0→0. The second member is proportional toa0 . The term
in curly brackets in Eq.~A5! is also proportional toa0 ,
while the term in curly brackets in Eq.~A6! stays away from
0. A detailed analysis proves that the matrix products (0
3(X02X1) and (0,1)(X01X1) vanish whena0→0. From
this we deduce that

S00~1,1!5S10~1,1!5 1
2 ~A11!

~using the conservation of probability to leave the inter
@0,1# and the symmetry with respect to the exchange of 0
1!.

Using Eqs. ~A3! and ~A4!, it is easy to obtain when
a0→0

S00~1,0!5
1

2
2

1

2

ŝ~l!

12 r̂ ~l!
~a0→0!. ~A12!

Using Eqs.~1.6! and~1.7!, one can also compute the variou
limits Sa0(0,e) whena0→0. Recalling that by conservation
of probabilities

S00~$e%!1S10~$e%!51, ~A13!

we obtain from Eqs.~1.2!–~1.7!, ~A12!, and~A13!

S00~0,0!5
1

2 F11 r̂ ~l!2 ŝ~l!1
ŝ~l!

12 r̂ ~l!
@ ŝ~l!2 r̂ ~l!

2 ŝ~2l!1 r̂ ~2l!#G , ~A14!

S00~0,1!5
1

2 F11 r̂ ~l!1
ŝ~l!2

12 r̂ ~l!G . ~A15!

4. Detailed transmission probabilities

Here we determine for future use the asymptotic value
Sa0($e8%u$e%). We start first with the system fo
Sa0(0,0u1,e). It is easy to verify

S00~0,0u1,1!5@rw01
2 #1@rw11we1#S00~0,0u1,e!

1@sw11we1#S10~0,0u1,e!, ~A16!

S00~0,0u1,0!5@rw00w01#1@rwe0w11#S00~0,0u1,e!

1@sw10we1#S10~0,0u1,e!, ~A17!

S10~0,0u1,1!5@sw01
2 #1@swe1w11#S00~0,0u1,e!

1@rwe1w11#S10~0,0u1,e!, ~A18!

S10~0,0u1,0!5@sw00w01#1@sw10we1#S00~0,0u1,e!

1@rw11we0#S10~0,0u1,e!. ~A19!

If we seta050 in Eqs.~A18! and ~A17! we obtain

S00~0,0u1,1!5S10~0,0u1,1!, ~A20!
)

l
d

of

S00~0,0u1,0!5
12 r̂ ~l!2 ŝ~l!

12 r̂ ~l!
S00~0,0u1,1!. ~A21!

Settinga050 in Eq. ~A15!, we get, using Eq.~A20!,

S10~0,0u1,0!5
12 r̂ ~l!2 ŝ~l!

12 r̂ ~l!
S00~0,0u1,1!. ~A22!

Now, when we seta050 in Eq. ~A15!, this equation de-
generates. So we use Eqs.~A20!–~A22! in Eq. ~A16! to ob-
tain

S00~0,0u1,1!H 12@rw11w01#
12 r̂ ~l!2 ŝ~l!

12 r̂ ~l!

2@sw11w01#
12 r̂ ~l!2 ŝ~l!

12 r̂ ~l!
2@rw11

2 #J
2@sw11

2 #S10~0,0u1,1!50~a0
2! ~A23!

and Eq.~A18! gives

S10~0,0u1,1!$12@rw11
2 #%

2S00~0,0u1,1!H @sw11
2 #1@sw01w11#

12 r̂ ~l!2 ŝ~l!

12 r̂ ~l!

1@rw01w11#
12 r̂ ~l!2 ŝ~l!

12 r̂ ~l! J 50~a0
2!. ~A24!

Now the determinant of the 232 linear system~A23! and
~A24! is

a02S@12 r̂ ~l!2 ŝ~l!#S 22
12 r̂ ~l!2 ŝ~l!

12 r̂ ~l! D .

It is exactly of ordera0 , while the second members of Eq
~A23! and ~A24! are of ordera0

2. As a consequence,

S00~0,0u1,1!5S10~0,0u1,1!50. ~A25!

From Eqs.~A21! and ~A22!

S00~0,0u1,0!5S10~0,0u1,0!50. ~A26!

Then fora050,

S10~0,0u0,1!5@rw10#S00~0,0u1,1!1@swe0#S10~0,0u1,e!,

so that

S10~0,0u0,1!5S00~0,0u0,1!50. ~A27!

From these results one finds

S00~0,0u0,0!5 r̂ ~2l!. ~A28!

Finally, all the other transmission probabilities can be co
puted easily.
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APPENDIX B: TRANSMISSION PROBABILITIES
FOR N BARRIERS

We are now interested in the following quantities. We c

R@0,N#~ t;$e8%u$e%!dt

the probability that the particle, starting from 0 at timet
50, the states of the barriers being$ek%k50, . . . ,N[$e%,
leaves the interval@0,N# for the first time at point 0 betwee
timest andt1dt, the states of the barriers at that time bei
$ek8%k50, . . . ,N[$e8% ~with of course e0850!. In the same
manner, we shall also need

R@0,N#~ t;$e8%u12,$e%!dt,

which is defined exactly in the same way, except that n
the particle starts from 1 with a negative velocity~i.e., from
1 in the first interval@0,1# instead of 0!. Finally,

R@1,N#~ t;$e8%u$e%!dt

is defined as the probability that the particle starting at
50 from 1 ~with positive velocity!, the states of the barrier
being$ek%k51, . . . ,N5$e% in the interval@1,N#, leaves@1,N#
for the first time through 1, between timest and t1dt, the
states of the barriers being$ek8%k51, . . . ,N5$e8% ~with e1850!.

We shall also need the Laplace transforms

R@0,N#
u ~$e8%u$e%!5E

0

`

e2utR@0,N#~ t;$e8%u$e%!dt.

Whenu50 we skip the indexu50,

R@0,N#~$e8%u$e%!5R@0,N#
u ~$e8%u$e%!uu50 .

We also denote the aggregate quantities

R@0,N#~ tu$e%!5(
$e8%

R@0,N#~ t;$e8%u$e%!,

R@0,N#
~u! ~$e%!5(

$e8%

R@0,N#
~u! ~$e8%u$e%!.

1. Recursion relations

We write down recurrence relations for the matric
R@0,N#

u . Namely, we assume that

e0850. ~B1!

Summing up the different contributions, as done in Eqs.~1.4!
and ~1.5!, we find
l

w

R@0,N#
u ~$e8%u$e%!

5FS00~ t;0,e18ue0 ,e1!)
k>2

we
k8ekG ~u!

1R@0,N#
u ~$e8%u12;h08,0,$hk8%k>2!

3@R@1,N#~ t;01 ,$hk8%k>2u01 ,$hk%!wh
08h0

#~u!

3FS10~ t;h0,0ue0 ,e1!)
k>2

whkekG ~u!

~B2!

and we have

R@0,N#
u ~$e8%u12;e0,01 ,$ek%k>2!

5FS10~ t;e18,0u0,e0!)
k>2

we
k8ekG ~u!

1R@0,N#
u ~$e8%u12;h08,0,$hk8%k>2!

3@R@1,N#~ t;01 ,$hk8%k>2u0,$hk%k>2!wh
08h0

#u

3FS00~ t;0,h0u0,e0!)
k>2

whkekG u

. ~B3!

Although this system of equations~B2! and~B3! seems pro-
hibitively complicated, we shall show that it reduces to e
tremely simple forms in certain limiting cases, namely,a0
→0, a0→1, l→0, andl→`.

2. Asymptotic for a0˜0

a. A Laplace transform result foru>0

We first prove the following preliminary result. Foru
.0 anda050 we have

R@0,N#
u ~$e8%u0,1,$ek%k>2!5FS00~ t;0,e18u0,1!)

k>2
we

k8ekG ~u!

.

~B4!

To show this, we consider Eq.~B2! and we prove that

FS10~ t;h0,0u0,1!)
k>2

whkekG ~u!

50 for u.0, a050.

~B5!

This results from the expansion ofPk>2whkek
, so that the

quantity ~B5! is a sum of Laplace transforms~at positive
value of the Laplace parameter becauseu.0! of
S10(t;h0,0u0,1) and this is 0 by Eq.~A14!.

b. The caseu>0 with all barriers closed
(except the barrier at 0)

Using the results~B4! and Eqs.~A12! and~A13!, we can
prove that foru50, $ek%5$0,$1%k>1%, anda0→0, we have

R@0,N#~$e8%u0,$1%k>1!5R@0,N#~$e8%u0,$1%k>1!de
080)

k>1
de

k81 ,

~B6!
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R@0,N#~$e8%u12;e0,0,$1%k>2!

5R@0,N#~$e8%u12;e0,0,$1%k>2!de
080)

k>1
de

k8
. ~B7!

The proof is by recursion onN, the caseN51 being proved
in Sec. I. Finally, Eqs.~B2! and ~B3! become

R@0,N#~$e8%u0,$1%k>1!

5S00~0,1u0,1!de
080)

k>1
de

k81

1R@0,N#~$e8%u12;1,0,$1%k>2!

3R@1,N#~01 ,$1%k>2u01 ,$1%k>2!

3S10~1,0u0,1!, ~B8!
e

s

is
R@0,N#~$e8%u12;1,0,$1%k>2!

5S10~1,0u0,1!)
k>1

de
k81de

080

1R@0,N#~$e8%u12;1,0,$1%k>2!

3R@1,N#~0,$1%k>2u0,$1%k>2!S00~0,1u0,1!. ~B9!

c. Solution of the system (B8) and (B9)

First we notice, using the notation of Sec. I,

S00~0,1u0,1!5S00~0,1!,

S10~1,0u0,1!5S10~0,1!,

so that
R@0,N#~0,$1%k>1u0,$1%k>1!5S00~0,1!1
S10~0,1!2R@1,N#~0,$1%k>2u0,$1%k>2!

12S00~0,1!R@1,N#~0,$1%k>2u0,$1%k>2!
. ~B10!
is-

f a

a-

if
re

l

to
se

the

r

Notice that

R@0,N#~0,$1%k>1u0,$1%k>1![R@0,N#~0,$1%k>1!

is the total return probability~whatever the final states of th
barriers are! and the total transmission probability is thus

S@0,N#~0,$1%k>1!512R@0,N#~0,$1%k>1!. ~B11!

A little manipulation gives

1

S@0,N#~0,$1%k>1!
5

1

S@1,N#~0,$1%k>2!
1

1

S10~0,1!
21

~B12!

which leads to the addition formula~2.1!.

APPENDIX C: DERIVATION OF THE ASYMPTOTICS
FOR a1˜0

We now derive the first correction for smalla1 , denoted
by S@0,N#

(1) in Eq. ~3.1!. We consider the set of all trajectorie
starting from 0 at time 0, leaving@0,N# at a certain time,
throughN and the total weight of these trajectories, which
S@0,N# . We can write the matrixwe8e(t) as

w~ t !5S 1
0

12e2lt

e2lt D1a1~12e2lt!S 21
1

21
1 D

[w~0!1w~1!. ~C1!

and the stationary state

a5S 1
0D1a1S 21

1 D5a~0!1a~1!. ~C2!

A trajectory contributing toS@0,N# is determined by the
data
@p>N,~k0 ,e0 ,t0!,~k1 ,e1 ,t1!,...,~kp ,ep ,tp!#, ~C3!

where p is an integer greater than or equal toN, k050,
k1 ,...,kp5N are the positions of the successive barriers v
ited by the particle,e050, e1 ,...,ep are the states of the
barrier when the particle visits them, andt050<t1<¯

<tp are the instants of visit of the barriers. The weight o
trajectory ~C3! contains various factors of the typer l(t j
2t j 21) or sl(t i2t i 21), which are independent ofa1 , and
also contains factors depending ona1 , which are of two
types for each (kl ,e l ,t l), l>1. One has~i! a factorae l

if the
barrier is visited for the first time and thus found in its st
tionary state with probabilityae l

and ~ii ! a factor we le j
(t l

2t j ) if the barrier is not visited for the first time and
(kj ,e j ,t j ) was the event of a visit of that same barrier befo
(kl ,e l ,t j ).

To recoverS@0,N# , one sums overp>N and over all pos-
sible (kj ,e j ) and integrates overt0<t1<¯<tp,1`. Ob-

viously,S@0,N#
(0) is obtained fora051, namely, by replacing al

the ae l
and we le j

by 1 @as it should be from Eqs.~C1! and
~C2!#.

To obtainS@0,N#
(1) , one must consider the correction due

a singlea1 , in the weight of all possible trajectories. The
corrections can come only from factor~i! or ~ii ! above. In the
corresponding factor, we shall useae l

(1) or we le j

(1) (t l2t j ) and in

other factors one shall useae
(0) or wee8

(0) (t2t8) @as in Eqs.
~C1! and ~C2!#.

1. Corrections coming from an event of a first visit„kl ,e l ,t l…

There are two types of such corrections according to
value ofe l .

(a) e l50 (i.e., the barrier is open).For the terme l ,
a0

(1)52a1 . In the correction, all other barriers visited fo
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the first time are treated as open; for multiple visits, th
pick up the factorw00

(0)51.
If kl5k, the contribution is

2a1S@0,k#
~0! (

q50

`

~R@k,N#
~0! R@k,0#

~0! !qS@k,N#
~0! ,

whereR@a,b#
(0) is the probability that the particle entering th

interval @a,b# througha leaves it throughb ~without a barrier
in the interval@a,b#!. The total contribution isCa1 , obtained
by summing overk,

Ca152a1(
k>1

S@0,k#
~0! ~12R@k,N#

~0! R@k,0#
~0! !21S@k,N#

~0! .

However, it is also clear for anyk that

S@0,N#
~0! 5S@0,k#

~0! (
q50

`

~R@k,N#
~0! R@k,0#

~0! !qS@k,N#
~0! , ~C4!

so that

C1152Na1S@0,N#
~0! . ~C5!

(b) e l51 (the barrier is closed).In this case the term ine l
givesa1 as a contribution. The particle is reflected and has
return at least once to the barrierkl . At the first return inkl ,
the correction must be calculated usingwe je l

(0) or

we j1
~0!~ t !5 H12e2lt

e2lt
if e j50
if e j51. ~C6!

Once the barrier atkl has been found open, the subsequ
w (0) are all 1 for all subsequent returns tokl .

If the barrier atkl is still closed, the particle must visit thi
barrier a second time, giving a factor of the type~C5!. After
integration, we find a correctionCb , which is

C~b!5a1(
k>1

S@0,k#
~0! S (

q50

`

„R@k,0#
~0! 2 r̂ @k,0#

~0! ~l!…„r̂ @k,0#
~0! ~l!…qD

3~12R@k,0#
~0! R@k,N#

~0! !21S@k,N#
~0! . ~C7!

Here r @a,b#
(0) (t)dt is the probability that the particle enterin

@a,b# througha leaves@a,b# througha betweent and t1dt
without any barrier and

r̂ @a,b#
~0! ~l!5E

0

`

e2ltr @a,b#
~0! ~ t !dt,

R@a,b#
~0! [ r̂ @a,b#~0!.

Using Eq.~C4!, one can rewrite Eq.~C7! as

C~b!5a1S@0,N#
~0! (

k>1
„R@k,0#

~0! 2 r̂ @k,0#
~0! ~l!…„12 r̂ @k,0#

~0! ~l!…21.

BecauseR@k,0#
(0) 512S@k,0#

(0) one has

C~b!5Na1S@0,N#
~0! 2a1(

k51

N

S@k,0#
~0!

„12 r̂ @k,0#
~0! ~l!…21. ~C8!
y

o

t

2. Corrections due to an event of a second visit

In this case, one uses for the event (kl ,e l ,t l) thew (1) term
and for all other events we useae

(0)5de0 for the first visit
and w51 for all successive visits, until a certain (kl ,e l ,t l)
for which one useswe l0

(1)(t l2t j ) ~because the previouse j was

open!. Thereafter, one continues to usew (0) for all subse-
quent visits. We have two cases.

~i! At the last passaget j at kj5kl , beforet l , the velocity
was positive. The part of the trajectory from 0 tot j will give
a contribution, after integration over time

(
q>0

S@0,k#
~0! ~R@k,0#

~0! R@k,N#
~0! !q5S@0,k#

~0! ~12R@k,0#
~0! R@k,N#

~0! !21.

~C9!

Then comes the term we l0
(1)(t l2t j ), which is

2(21)de l0a1(12el(t l2t j )), which after integration overt l
will give the factor

2~21!de l0a1„R@k,N#
~0! 2 r̂ @k,N#

~0! ~l!…, ~C10!

corresponding to the loop fromkj5kl back to kl inside
@kl ,N#.

~a! If at t l the barrier is closed, the particle can perform
arbitrary number of returns fromkl to kl within @kl ,N#, find-
ing the barrier closed and eventually leaving@kl ,N# through
N, which has a probability

S@k,N#
~0!

„12 r̂ @k,N#~l!…21, ~C11!

or it can perform an arbitrary number of returns fromkl to kl
within @kl ,N#, finding the barrier closed, then it returns
kl , finding the barrier open, and then moves in the wh
system with all barriers open until it leaves throughN. The
probability is

S@k,N#
~0! ~12R@k,0#

~0! R@k,N#
~0! !21R@k,0#

~0!
„R@k,N#

~0! 2 r̂ @k,N#~l!…

3„12 r̂ @k,N#~l!…21. ~C12!

So this case~i a! gives a contributionC(i a) that is the
product of Eqs.~C9! and ~C10! and the sum of Eqs.~C11!
and ~C12!, that is,

C~ i a!5a1(
k>1

S@0,k#
~0! ~12R@k,0#

0 R@k,N#
~0! !21

3@R@k,N#
~0! 2 r̂ @k,N#~l!#

3S@k,N#
~0! @12 r̂ @k,N#~l!#21

3F11
R@k,0#

~0! @R@k,N#
~0! 2 r̂ @k,N#~l!#

12R@k,0#
~0! R@k,N#

~0! G .

Using again Eq.~C4! this is

C~ i a!5a1S@0,N#
~0! (

k>1
S 12R@k,0#

~0! r̂ @k,N#~l!

12R@k,0#
~0! R@k,N#

~0! D
3S R@k,N#

~0! 2 r̂ @k,N#~l!

12 r̂ @k,N#~l!
D . ~C13!
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~b! If at time t l the barrier is open (e l50) it remains open
all the time~for the first-order contributions!. This gives the
contribution

C~ i b!52a1(
k

S@k,N#
~0! R@k,0#

~0!

12R@k,0#
~0! R@k,N#

~0! @R@k,N#
~0! 2 r̂ @k,N#~l!#

3
S@0,k#

~0!

12R@k,0#
~0! R@k,N#

~0! ~C14!

or

C~ i b!52a1S@0,N#
~0! (

k>1

R@k,0#
~0!

12R@k,0#
~0! R@k,N#

~0! @R@k,N#
~0! 2 r̂ @k,N#~l!#.

Summing Eqs.~C13! and ~C14! gives the total contribution
of case~i!

C~ i!5a1S@0,N#
~0! (

k>1

N21

S@k,0#
~0!

R@k,N#
~0! 2 r̂ @k,N#~l!

~12R@k,0#R@k,N#!@12 r̂ @k,N#~l!#
.

~C15!

~ii ! At the last passaget j at kj5kl beforet l , the velocity
was negative. The part of the trajectory from 0 tot j will give
after integration overt j

R@k,N#
~0! ~12R@k,0#

~0! R@k,N#
~0! !21S@0,k#

~0! . ~C16!

The loop from kj5kl at t j to kl at time t l gives thea1
contribution~after integration ont l!

7~21!de l0@R@k,0#2 r̂ @k,0#~l!#. ~C17!

~a! If e l51 at time t l , the trajectory can perform an a
bitrary number of returns fromkl to kl in @0,k# finding the
barrier closed before the first time when it finds it open a
leaving toN. This gives, using Eqs.~C16! and ~C17!,

C~ ii a!5a1

R@k,N#
~0! S@0,k#

~0!

12R@k,0#
~0! R@k,N#

~0!

@R@k,0#
~0! 2 r̂ @k,0#~l!#

12 r̂ @k,0#~l!

3
S@k,N#

12R@k,0#
~0! R@k,N#

~0! . ~C18!

~b! If e l50, the barrier is open. It will remain open for th
calculation of the corrections. The contribution of trajec
ries fromk to N is

S@k,N#
~0!

1

12R@k,0#
~0! R@k,N#

~0! ,

which together with Eq.~C16! and ~C17! gives

C~ ii b!52a1

S@k,N#
~0!

12R@k,0#
~0! R@k,N#

~0! @R@k,0#2 r̂ @k,0#~l!#

3
R@k,N#

~0! S@0,k#
~0!

12R@k,0#
~0! R@k,N#

~0! . ~C19!

The total contributionC(ii) of the case~ii ! is given by sum-
ming Eqs.~C18! and ~C19!:
d

-

C~ ii !52a1S@0,N#
~0! (

k>0
S@k,0#

~0! S R@k,0#
~0! 2 r̂ @k,0#

12 r̂ @k,0#
D S R@k,N#

~0!

12R@k,0#
~0! R@k,N#

~0! D .

~C20!

3. Addition of all corrections

If one sums the various contribution
C(a) ,C(b) ,C(i) ,C(ii) , one obtains the corrections

S@0,N#
~1! 5a1FS@0,N#

~0! S 12
2S@0,N#

~0!

12 r̂ @0,N#~l!
D 1~S@0,N#

~0! !2

3 (
k51

N21 S 12
1

12 r̂ @k,0#~l!
2

1

12 r̂ @k,N#~l! D G .

By symmetry, we can rewrite this formula as

S@0,N#
~1! 5a1FS@0,N#

~0! @11~N21!S@0,N#
~0! #22~S@0,N#

~0! !2

3 (
k51

N S 12
1

12 r̂ @0,k#~l! D G , ~C21!

which using Eq.~3.3! for S@0,N#
(0) is

S@0,N#
~1! 5a1F NS@0,N#

~0!

N2~N21!S
2

2S@0,N#
~0! S

N2~N21!S (
k51

N
1

12 r̂ @0,k#~l!G .

~C22!

From Eq.~C22! it is straightforward to derive the result
of Eqs.~3.4!–~3.7!.

APPENDIX D: PROOF OF STOCHASTIC RESONANCE

1. An upper bound for the quantity r̂
†0,k‡

We consider an interval@a,b# that is composed of@a,c#
and@c,b#. In @a,c# and@c,b# we have two stochastic process
and we denotesca(t)dt the probability that starting froma at
time 0, one leaves@a,c# through c between timest and t
1dt andr ca(t)dt the probability that starting froma at time
0 one leaves@a,c# througha between timest and t1dt. sbc
and r bc denote the same quantities relative to the inter
@c,b# andsba ,r ba are the quantities relative to the entire i
terval @a,b#5@a,c#ø@c,b# for the joint stochastic proces
in this full interval~see Fig. 3!. We denote the Laplace trans
form of a functions by ŝ,

ŝca~l!5E
0

`

e2ltsca~ t !dt.

Finally, we can also introduce the quantitysac(t)dt,
which is the probability starting fromc to leave@a,c# through

FIG. 3. Intervals@a,c# and @c,b# introduced in Appendix C.
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a for the first time in@ t,t1dt# and alsor ac ,scb ,... andtheir
Laplace transforms. Then it is easy to prove thatŝba and r̂ ba
are given by

ŝba5 ŝbc~12 r̂ acr̂ bc!
21ŝca ,

~D1!
r̂ ba5 r̂ ca1 ŝacr̂ cb~12 r̂ acr̂ bc!

21ŝac .

We write

yba5 ŝba
21, tba5 r̂ baŝba

21. ~D2!

Using these variables, the system~D1! can be written as

yba5 ŝba
21ybc2~ ŝca

21r̂ ac!tbc ,
~D3!

tba5~ r̂ caŝca
21!ybc1 ŝca~12 ŝac

21r̂ caŝca
21r̂ ac!tbc .

If the stochastic processes are symmetric in each inte
so that

sca5sac , r ca5r ac,

etc., the system~D3! reduces to

yba5 ŝca
21ybc2~ ŝca

21r̂ ca!tbc ,
~D4!

tba5~ r̂ caŝca
21!ybc1 ŝca~12 ŝca

22r̂ ca
2 !tbc .

We now apply this result to the system ofN intervals with

b50, c5k, a5k11

and simply denote

yk5y0k , tk5t0k

so that the system~D4! becomes in our case

yk115 ŝ21yk2 ŝ21r̂ tk ,
~D5!

tk115 ŝ21r̂ yk1 ŝ~12 ŝ22r̂ 2!tk ,

which allows us to recoverr̂ @0,k11# as

r̂ @0,k11#5
tk11

yk11
5

ŝ21r̂ 1 ŝ~12 ŝ22r̂ 2! r̂ @0,k#

ŝ212~ ŝ21r̂ ! r̂ @0,k#
. ~D6!

We now introduce the function~see Fig. 4!

FIG. 4. Functionf (x) as defined by Eq.~D7!, its fixed point,
and the position of 122S if Eq. ~D10! holds, as well as the position
of r̂ @0,k# .
al

f ~x!5
r̂ 1 ŝ2~12 ŝ22r̂ 2!x

12 r̂ x
~D7!

so thatf is convex and increasing. Moreover, from Eqs.~D6!
and ~D7!

f ~ r̂ @0,k#!5 r̂ @0,k11# .

It is trivial that r̂ @0,k11#. r̂ @0,k# . Let us denote byA the
fixed point of f,

f ~A!5A. ~D8!

We have a situation like that in Fig. 5, so that

r̂ @0,k#,A. ~D9!

The inequality~4.15! is proved provided inequality~4.20!
holds, namely,

A,122S. ~D10!

However, becausef (A)5A and f is below the function
i (x)5x for x.A, in order that Eq.~D10! holds, it is suffi-
cient that

f ~122S!,122S,

which, using the definition~D7! of f (x), gives us the in-
equality ~4.20!.

2. Discussion of the system of inequalities„4.40…–„4.44…

This system is

g~q!, ŝ2,h~q!,
~D11!

ŝ2<q2, ŝ2<S2, S<q<1,

with

g~q!5q222qS,
~D12!

h~q!5q21
4S2

122S
q2

4S2

122S
.

FIG. 5. Small curvilinear triangle where the inequalities~D-11!
hold. The dotted time is the line followed by@q(l), ŝ2(l)# whenl
runs from 0 to`. It cuts this triangle.
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This system can be most simply discussed graphically.
represent this system in Fig. 5 with abscissaq and ordinate
ŝ2. Both parabolasŝ25g(q) and h(q) cut the axis atq
52S and 2S,1. The region where inequalities~D11! hold is
shown in Fig. 5. The pointX5(q5S,ŝ25S2) corresponds to
l50, wherer̂ (0)5R, ŝ(0)5S, andq512R5S. The point
sa

m

y

.
-

-

eY5(q51,ŝ250), corresponds tol5`, where r̂ (`)
5 ŝ(`)50. Whenl varies from 0 tò , the point„q(l)51
2 r̂ (l),ŝ2(l)… follows a trajectory joiningX to Y. This tra-
jectory cuts out the allowed region on a certain interval c
responding to an intervalL of frequencyl in which in-
equalities~4.13! and~4.14! hold and in which the stochasti
resonance occurs.
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